ten most supercomputers

Ten of the coolest and most powerful supercomputers of all time


For decades, supercomputers have helped scientists perform calculations that would not have been possible on regular computers of that time. Not only has the construction of supercomputers helped push the envolope of what is possible within the computing field, but the calculations supercomputers have performed for us have helped further both science and technology, and ultimately our lives.

This post pays tribute to some of the most powerful supercomputers the world has seen, all the way from the 1970s until today.

Cray-1

The first Cray computer was developed by a team lead by the legendary Seymor Cray. It was a freon-cooled 64-bit system running at 80 MHz with 8 megabytes of RAM. Careful use of vector instructions could yield a peak performance of 250 megaflops. Together with its freon cooling system, the first model of the Cray-1 (Cray-1A) weighed 5.5 tons and was delivered to the Los Alamos National Laboratory in 1976.

The famous C-shape was created in an effort to keep the cables as short as possible (the curve makes the distances on the inside shorter). Shorter cables allowed the system to operate at a higher frequency (80 MHz was insanely fast at the time).

Cray-2

The Cray-2 was the world’s fastest computer between 1985-1989, capable of 1.9 gigaflops. Like the Cray-1, it was a 64-bit system. The first Cray-2 was delivered with 2 gigabytes of RAM which was considered massive at the time. Its circuit boards were packed in eight tight, interconnected layers on top of each other, which made any form of air cooling impossible. Instead a special electrically insulating liquid called Flourinert (from 3M, the company that brought you Post-it notes) was used to cool the circuits. Thanks to the heat exchanger water tank that came with the liquid cooling system, visible in the pictures below, the Cray-2 earned the nickname “Bubbles”.

The Connection Machine 5

The CM-5 was part of a family of supercomputers by Thinking Machines Corporation initially intended for artificial intelligence applications and symbolic processing, but found more success in the field of computational science. A famous CM-5 system was FROSTBURG which was installed at the US National Security Agency (NSA) in 1991, operating until 1997. The FROSTBURG computer was initially delivered with 256 processing nodes, but was upgraded in 1993 to a total of 512 processing nodes and 2 terabytes of RAM. It used SPARC RISC processors and had a peak performance of 65.5 gigaflops. It had cool-looking light panels that showed processing node usage and could also be used for diagnostics purposes. A CM-5 was also featured in the movie Jurassic Park (in the island control room).

Fujitsu Numerical Wind Tunnel

Fujitsu developed the supercomputer known as the Numerical Wind Tunnel in cooperation with Japan’s National Aerospace Laboratory. As its name implies, it was used to simulate wind turbulence on aircraft and spacecraft, and also to forecast weather. The system was capable of 124.5 gigaflops and was the fastest in the world when it debuted in 1993. It was the first computer to break the 100 gigaflops barrier.

ASCI Red

The ASCI Red, a collaboration between Intel and Sandia Labs, was the world’s fastest computer between 1997-2000. The original ASCI Red used Pentium Pro processors clocked at 200 MHz, later upgraded to Pentium II Overdrive processors operating at 333 MHz. It was the first computer to break the teraflops barrier (and after the processor upgrade it passed 2 teraflops). The machine had 4,510 compute nodes (with close to 10,000 Pentium Pro processors), a total of 1,212 gigabytes of RAM, and 12.5 terabytes of disk storage. The upgraded version of ASCI Red was housed in 104 cabinets, taking up 2,500 square feet (230 square meters). ASCI stands for Accelerated Strategic Computing Initiative, a US government initiative to replace live nuclear testing with simulation.

ASCI White

ASCI White took over as the world’s fastest supercomputer after ASCI Red and kept that position between 2000-2002. Although similar in name, the ASCI White was completely different from ASCI Red. Intel had constructed the ASCI Red, but the ASCI White was an IBM system, based on IBM’s RS/6000 SP computer system. It housed a total of 8,192 POWER3 processors operating at 375 MHz, 6 terabytes of RAM and 160 terabytes of disk storage. The ASCI White was capable of more than 7 teraflops.

The Earth Simulator

The Earth Simulator was built by NEC for the Japan Aerospace Exploration Agency, the Japan Atomic Energy Research Institute and the Japan Marina Science and Technology Center. It was the world’s fastest computer between 2002-2004. The Earth Simulator is used to run global climate simulations for both the atmosphere and the oceans. Based on NEC’s SX-6 architecture, it had a total of 5,120 processors, 10 terabytes of RAM and 700 terabytes of disk space (plus 1.6 petabytes of mass storage in tape drives). The initial Earth Simulator was capable of a theoretical top performance of 40 teraflops, though “only” 35.86 teraflops have been achieved. An upgraded version of the system is still in use.

Blue Gene/L

IBM initially developed the Blue Gene family of supercomputers to simulate biochemical processes involving proteins. The Blue Gene/L at the Lawrence Livermore National Laboratory (LLNL) was the world’s fastest computer between November 2004 until 2008 when it lost its crown to another IBM project, the Roadrunner. In its current configuration, the Blue Gene/L at LLNL has 131,072 IBM PowerPC processors running at 700 MHz, a total of 49.1 terabytes of RAM, 1.89 petabytes of disk space and a theoretical peak performance of 367 teraflops. A more beefed up version of the system previously achieved a peak performance of 596 teraflops. (For another very powerful Blue Gene computer, this time based on Blue Gene/P, check out the newly updated Jugene which is currently the fastest supercomputer in Europe.)

Jaguar

Located at the Oak Ridge National Laboratory, this Cray supercomputer is currently capable of 1.64 petaflops. The Jaguar has gone through several iterations, and is currently using Cray’s XT4 and XT5 architecture with quad-core AMD Opteron processors. It has more than 181,000 processing cores with a total of 362 terabytes of RAM and 10 petabytes of disk space. The Jaguar occupies 284 cabinets, and the XT5 section alone (200 cabinets) is as large as an NBA basketball court. With a performance of just over 1 petaflops, it was the second-fastest computer in the world in 2008.

IBM Roadrunner

The IBM Roadrunner is capable of 1.71 petaflops and has been the world’s fastest computer since June 2008 and was the first computer able to keep a sustained 1 petaflops performance. It has 12,960 IBM PowerXCell 8i processors operating at 3.2 GHz and 6,480 dual-core AMD Opteron processors operating at 1.8 GHz, resulting in a total of 130,464 processor cores. It also has more than 100 terabytes of RAM. The Roadrunner supercomputer is housed in 296 racks and occupies 6,000 square feet (560 square meters) at the Los Alamos National Laboratory in New Mexico.


And if you think these were impressive, just wait a couple of years. There are several projects in the works that will make these systems look like yesterday’s budget PCs. For example, IBM’s recently announced Sequoia is set to become the flagship of IBM’s armada of supercomputers. If things go according to plan, it will be capable of 20 petaflops by 2011, about 20 times faster than today’s most powerful supercomputers.

Read Users' Comments (1)comments